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Finding anomalies (hypothesis testing)

Assessing the evidence for a hypothesis

Among professional football fans, the New England Patriots are
a polarizing team. Their fan base is hugely devoted, probably
due to their long run of success over more than a decade. Many
others, however, dislike the Patriots for their highly publicized
cheating episodes, whether for deflating footballs or clandestinely
filming the practice sessions of their opponents. This feeling is so
common among football fans that sports websites often run images
like the one at right (of the Patriots’ be-hoodied head coach, Bill
Belichick), or articles with titles like “11 reasons why people hate
the Patriots.” Despite—or perhaps because of—their success, the
Patriots always seems to be dogged by scandal and ill will.

But could even the Patriots cheat at the pre-game coin toss?
Believe it or not, many people think so! That’s because, for a

stretch of 25 games spanning the 2014-15 NFL seasons, the Patriots
won 19 out of 25 coin tosses—that’s a 76% winning percentage.
Needless to say, the Patriots’ detractors found this infuriating.

But before turning to religion, let’s take a closer look at the
evidence. Just how improbable is this anomaly? More specifically,
how likely is it that one team could win the pre-game coin toss at
least 19 out of 25 times, assuming that there’s no cheating going
on?

This question can be answered directly using probability theory.
But it’s even easier to answer using the Monte Carlo method. The
Monte Carlo method, also known as Monte Carlo simulation, in-
volves a computer program that simulates a random process (like,
in this case, a sequence of 25 coin tosses). To use the Monte Carlo
method to calculate the probability of some event A, we repeatedly
simulate the random process many times, and each time we ask,
“Did A happen?” The Monte Carlo estimate for P(A) is the fre-
quency with which A happens across all the simulations. So here,
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10,000 simulated runs of 25 coin flips
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Figure 7.1: This histogram shows the
results of a Monte Carlo simulation, in
which we count the number of wins
in 25 simulated coin flips over 10,000
different simulations. The red area
(which has cumulative probability of
0.0062) approximates the probability of
winning 19 or more flips, out of 25.

for example, we might run 10,000 Monte Carlo simulations, where
each simulation is a sequence of 25 coin tosses. For each simulated
sequence, we’d ask “Did the Patriots win 19 or more coin flips?”

In Figure 7.1, we see the results of precisely this Monte Carlo
simulation for pre-game NFL coin tosses, assuming that the Patri-
ots actually have a 50% chance of winning each toss. Specifically,
we have repeated the following simple process 10,000 times:

1. Simulate 25 coin tosses in which the Patriots have a 50%
chance of winning each toss.

2. Count how many times out of 25 that the Patriots won
the toss.

If you’re counting, that’s 250,000 coin tosses: 10,000 simulations
of 25 tosses each. Figure 7.1 shows the results: a histogram of
the number of coin tosses won by the Patriots across our 10,000
simulations. Clearly 19 wins is an unusual, although not impos-
sible, number under this distribution: in our simulation, the Pa-
triots won at least 19 tosses only 62 of 10,000 times (probability
p = 0.0062), shown as the red area in Figure 7.1.

So did the Patriots win 19 out of 25 coin tosses by chance? Well,
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nobody knows for sure—I report, you decide.1 But unless you’re 1 Despite the small probability of such
an extreme result, it’s hard to believe
that the Patriots cheated on the coin
toss, for a few reasons. First, how
could they? The coin toss would be
extremely hard to manipulate, even if
you were inclined to do so. Moreover,
the Patriots are just one team, and this
is just one 25-game stretch. There are
32 NFL teams, so the probability that
one of them would go on an unusual
coin-toss winning streak over some
25-game stretch over a long time period
is a lot larger than the number we’ve
calculated. Finally, after this 25-game
stretch, the Patriots reverted back
to a more typical coin-toss winning
percentage, closer to 50%. The 25-game
stretch was probably just luck.

a hard-core NFL conspiracy theorist, let me encourage you to put
aside the Patriots for a moment and focus instead on the process
we’ve just gone through. This simple example has all the major
elements of hypothesis testing:

(1) We have a null hypothesis H0, that the pre-game coin toss in the
Patriots’ games was truly random.

(2) We use a test statistic, number of Patriots’ coin-toss wins, to
measure the evidence against the null hypothesis. It helps
to have a letter to denote this test statistic as a general rule,
so we’ll use the Greek letter D for this purpose: D is our test
statistic, in this case the number of coin toss wins.

(3) There is a way of calculating the probability distribution of the
test statistic D, assuming that the null hypothesis is true. Here,
we just ran a Monte Carlo simulation of coin flips, assuming
an unbiased coin. We denote this distribution as P(D | H0):
that is, the probability distribution of our test statistic D, as-
suming that H0 is true.

(4) Finally, we used this probability distribution P(D | H0) to
assess whether the null hypothesis looked believable in light of
the data.

All hypothesis testing problems have these same four elements.
Usually the difficult part is Step 3: calculating the probability
distribution of the test statistic, assuming that the null hypothesis
is true. The essence of the problem is that, in most real problems,
we can’t just run a simple simulation of coin flips. We’ll have to
work a bit harder when we revisit the idea of hypothesis testing in
more complex settings.

There’s also one subtle and potentially confusing point about
the notation for hypothesis tests, and we want to make sure this
point is clear before proceeding. It concerns the use of the letter D
to refer to the test statistic. To understand hypothesis testing, you
really have to under this test statistic in two parallel ways:

1. There’s the actual value of the test statistic in the real
world. In our example, that’s 19 wins in the coin toss.

2. But then there’s also all the different possible or hypothet-
ical values of the test statistic that we might have gotten
in a world where the null hypothesis is correct. In our
example, these are shown in the histogram in Figure 7.1.
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It’s really, really important to distinguish these two: that’s
because the whole point of hypothesis testing is to determine
whether your observed test statistic is consistent with the kinds
of test statistics you might expect to see under the null hypothe-
sis. So here’s the convention we’ll use: D refers to the test statistic
as a hypothetical entity under the null hypothesis, whereas Dobs
refers to the actual test statistic you observed in the real world.
Thus the histogram in Figure 7.1 shows the distribution of possible
values for D, whereas the red vertical line in that figure marks the
observed value of Dobs = 19.

Using and interpreting p-values

There’s one obvious question we haven’t really answered. How do
we accomplish step (4) in the hypothesis test? That is, how can we
measure whether the observed statistic for your data is consistent
with the null hypothesis?

The typical approach here is to compute something called a
p-value. Although we didn’t call it by the name “p-value,” this is
exactly what we did for the Patriots’ coin-flipping example.

Let’s begin with a concise definition of a p-value, before we
slowly unpack the definition (which is dense and non-intuitive).
A p-value is the probability of observing a test statistic as extreme as, or
more extreme than, the test statistic actually observed, given that the null
hypothesis is true. The way to compute the p-value is to calculate a
tail area indicating what proportion of the sampling distribution,
P(D | H0), lies at or beyond the observed test statistic.

Using p-values has both advantages and disadvantages. The
main advantage is that the p-value gives us a continuous measure
of evidence against the null hypothesis. The smaller the p-value,
the more unlikely it is that we would have seen our data under the
null hypothesis, and therefore the greater the evidence the data
provide that H0 is false.

The main disadvantage is that the p-value is hard to interpret
correctly. Just look at the definition—it’s pretty counterintuitive!
To avoid having to think too hard about what a p-value actually
means, people often take p  0.05 as a very important threshold
that demarcates “significant” (p  0.05) from “insignificant”
(p > 0.05) results. While there are some legitimate reasons2 for 2 If you are interested in these reasons,

you should read up on the Neyman–
Pearson school of hypothesis testing.

thinking in these terms, in practice, the p  0.05 criterion can feel
pretty silly. After all, there isn’t some magical threshold at which
a result becomes important: in all practical terms, p = .049 and
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p = .051 are nearly identical in terms of the amount of evidence
they provide against a null hypothesis.

Because of how counterintuitive p-values are, people make
mistakes with them all the time, even (perhaps especially) people
with Ph.D’s quoting p-values in original research papers. Here is
some advice about a few common misinterpretations:

• The p-value is not the probability that the null hypothesis is
true, given that we have observed our statistic. Remember,
the p-value assumes that the null hypothesis is true.

• The p-value is not the probability of having observed our
statistic, given that the null hypothesis is true. Rather, it is
the probability of having observed our statistic, or any more
extreme statistic, given that the null hypothesis is true.

• The p-value is not the probability that your procedure will
falsely reject the null hypothesis, given that the null hypothe-
sis is true.3 3 To get a guarantee of this sort, you

have to set up a pre-specified rejection
region for your p-value (like 0.05), in
which case the size of that rejection
region—and not the observed p-value
itself—can be interpreted as the prob-
ability that your procedure will falsely
reject the null hypothesis, given that
the null hypothesis is true. As above:
if you’re interested, read about the
Neyman–Pearson approach to testing—
totally optional here.

The moral of the story is: always be careful when quoting or
interpreting p-values. In many circumstances, a better question
to ask than “what is the p-value?” is “what is a plausible range
for the size of the effect?” This question can be answered with
something called a confidence interval, which we’ll turn to in the
very next chapter.


